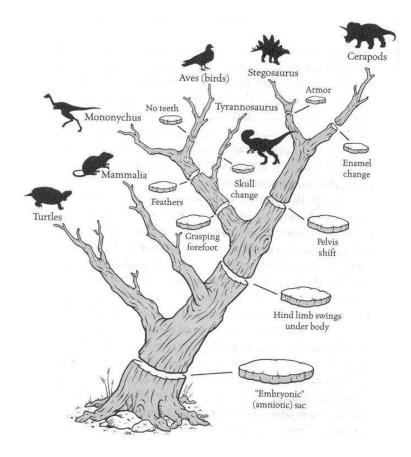
Small phylogeny problem: character evolution trees

Arvind Gupta Ján Maňuch Ladislav Stacho and Chenchen Zhu

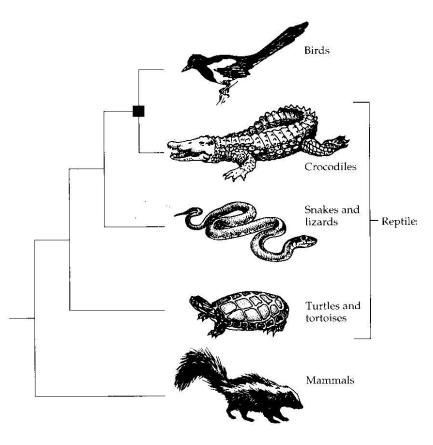
School of Computing Science and Department of Mathematics Simon Fraser University, Canada

 science determining ancestor/descendent relationships between species

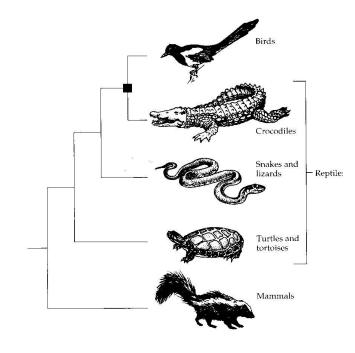
- science determining ancestor/descendent relationships between species
- usually expressed by phylogenetic trees



- science determining ancestor/descendent relationships between species
- usually expressed by phylogenetic trees

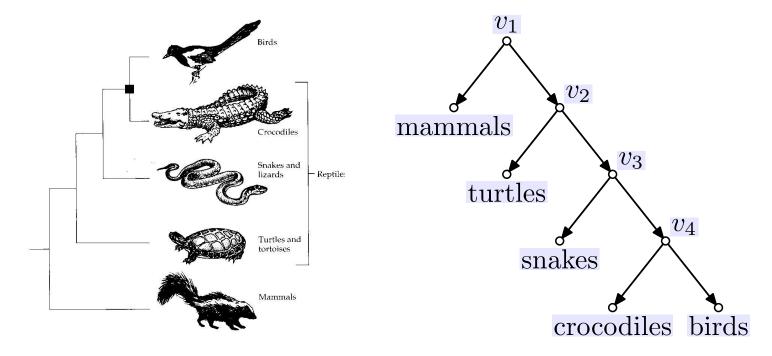


- science determining ancestor/descendent relationships between species
- usually expressed by phylogenetic trees



- the leaves represent extant species
- internal nodes hypothetical ancestors

- science determining ancestor/descendent relationships between species
- usually expressed by phylogenetic trees



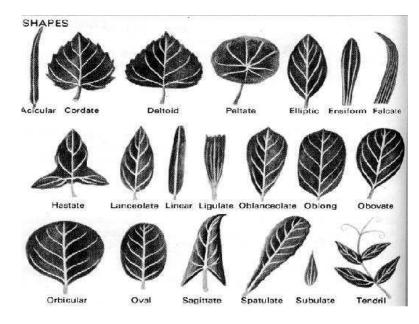
- the leaves represent extant species
- internal nodes hypothetical ancestors

Characters

Principle of parsimony: the goal is to find the tree requiring the smallest number/score of evolutionary transitions (such as the loss of one character, or the modification or gain of another).

Characters

- Principle of parsimony: the goal is to find the tree requiring the smallest number/score of evolutionary transitions (such as the loss of one character, or the modification or gain of another).
- Each character (a morphological feature, a site in a DNA sequence, etc.) takes on one of a few possible states.



Characters

- Principle of parsimony: the goal is to find the tree requiring the smallest number/score of evolutionary transitions (such as the loss of one character, or the modification or gain of another).
- Each character (a morphological feature, a site in a DNA sequence, etc.) takes on one of a few possible states.
- Species can be modeled as vectors of states of a group of characters.

Large phylogeny problem

- given:
 - set of characters
 - set of states for each character
 - costs of transitions from one state to another
 - extant species (labeled with states for each character)

Large phylogeny problem

given:

- set of characters
- set of states for each character
- costs of transitions from one state to another
- extant species (labeled with states for each character)

task:

 find a phylogeny tree and a labeling of internal nodes that minimizes cost over all evolutionary steps (principle of parsimony)

Large phylogeny problem

- given:
 - set of characters
 - set of states for each character
 - costs of transitions from one state to another
 - extant species (labeled with states for each character)
- task:
 - find a phylogeny tree and a labeling of internal nodes that minimizes cost over all evolutionary steps (principle of parsimony)
- This problem is NP-hard [Foulds, Graham (1982)].

Small phylogeny problem

given:

- set of characters
- set of states for each character
- costs of transitions from one state to another
- extant species (labeled with states for each character)
- structure of phylogeny tree (extant species are leaves of the tree)

Small phylogeny problem

given:

- set of characters
- set of states for each character
- costs of transitions from one state to another
- extant species (labeled with states for each character)
- structure of phylogeny tree (extant species are leaves of the tree)

task:

 find a labeling of internal nodes that minimizes cost over all evolutionary steps

Small phylogeny problem

given:

- set of characters
- set of states for each character
- costs of transitions from one state to another
- extant species (labeled with states for each character)
- structure of phylogeny tree (extant species are leaves of the tree)

task:

- find a labeling of internal nodes that minimizes cost over all evolutionary steps
- There are polynomial algorithms: [Fitch (1971)] (uniform costs), [Sankoff (1975)] (non-uniform costs).

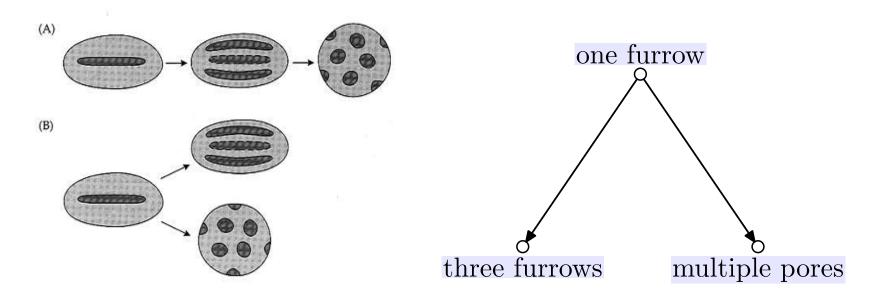
Character evolution tree

- So far we assumed that during one evolutionary step one state of a character can change to any other state. However, for many characters character state order and character state polarity can be observed.
 - **Example:** character evolution trees for pollen



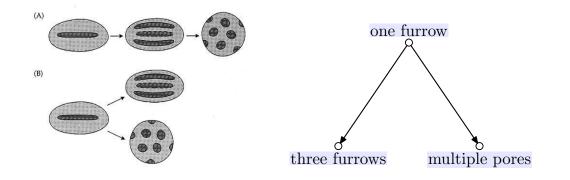
Character evolution tree

- So far we assumed that during one evolutionary step one state of a character can change to any other state. However, for many characters character state order and character state polarity can be observed.
 - **Example:** character evolution trees for pollen



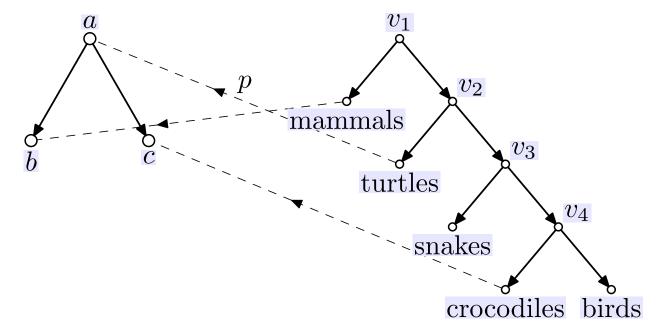
Character evolution tree

- So far we assumed that during one evolutionary step one state of a character can change to any other state. However, for many characters character state order and character state polarity can be observed.
 - **Example:** character evolution trees for pollen

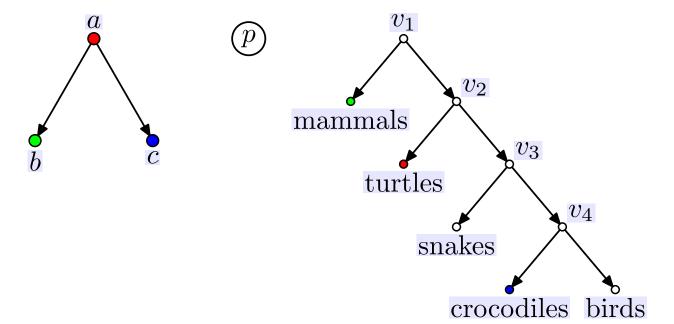


Our goal is to find a method of directly comparing a character evolution trees with a phylogenetic trees.

- **given:**
 - character evolution tree H_h with V(H) being states of the character
 - a phylogeny tree G_g with leaves L(G) being extant species
 - a *leaf labeling* $p : L(G) \rightarrow V(H)$ (a partial function)

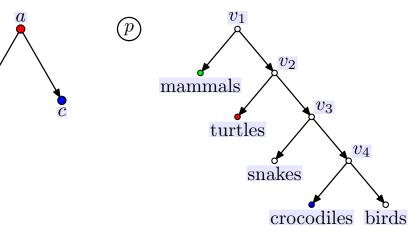


- **given:**
 - character evolution tree H_h with V(H) being states of the character
 - a phylogeny tree G_g with leaves L(G) being extant species
 - a *leaf labeling* $p : L(G) \rightarrow V(H)$ (a partial function)

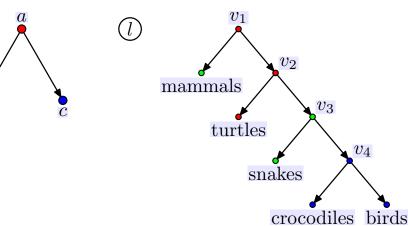


- given:
 - character evolution tree H_h with V(H) being states of the character
 - a phylogeny tree G_g with leaves L(G) being extant species
 - a *leaf labeling* $p : L(G) \rightarrow V(H)$ (a partial function)
- task:
 - find a *labeling* $l : V(G) \rightarrow V(H)$ which is:
 - *p*-constrained

- given:
 - character evolution tree H_h with V(H) being states of the character
 - a phylogeny tree G_g with leaves L(G) being extant species
 - a *leaf labeling* $p: L(G) \rightarrow V(H)$ (a partial function)
- task:
 - find a *labeling* $l : V(G) \rightarrow V(H)$ which is:
 - p-constrained

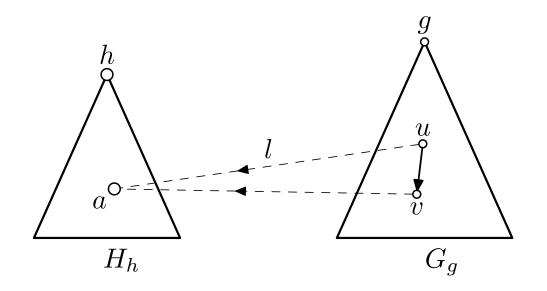


- given:
 - character evolution tree H_h with V(H) being states of the character
 - a phylogeny tree G_g with leaves L(G) being extant species
 - a *leaf labeling* $p: L(G) \rightarrow V(H)$ (a partial function)
- task:
 - find a *labeling* l : $V(G) \rightarrow V(H)$ which is:
 - p-constrained

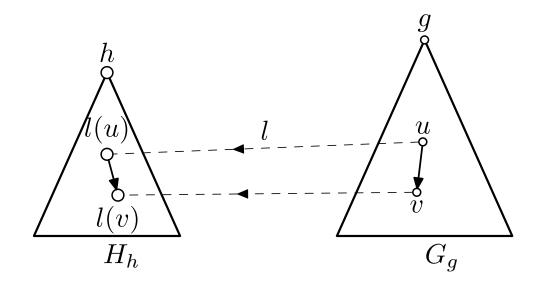


- given:
 - character evolution tree H_h with V(H) being states of the character
 - a phylogeny tree G_g with leaves L(G) being extant species
 - a *leaf labeling* $p: L(G) \rightarrow V(H)$ (a partial function)
- task:
 - find a *labeling* $l : V(G) \rightarrow V(H)$ which is:
 - *p*-constrained
 - if a species v is a child of a species u then the character state l(v) is either equivalent to, or a child of the character state l(u)

- task:
 - find a *labeling* $l : V(G) \rightarrow V(H)$ which is:
 - *p*-constrained
 - if a species v is a child of a species u then the character state l(v) is either equivalent to, or a child of the character state l(u)

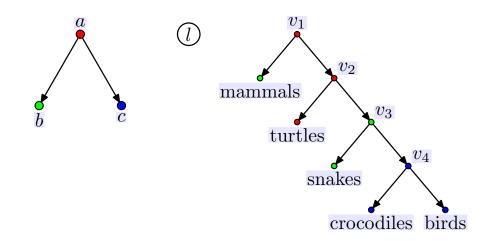


- task:
 - find a *labeling* $l : V(G) \rightarrow V(H)$ which is:
 - *p*-constrained
 - if a species v is a child of a species u then the character state l(v) is either equivalent to, or a child of the character state l(u)

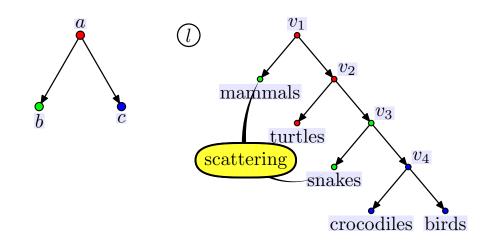


- task:
 - find a *labeling* $l : V(G) \rightarrow V(H)$ which is:
 - *p*-constrained
 - if a species v is a child of a species u then the character state l(v) is either equivalent to, or a child of the character state l(u)
 - Joes not allow "scattering" [Lipscomb (1992)]

- task:
 - find a *labeling* $l : V(G) \rightarrow V(H)$ which is:
 - *p*-constrained
 - if a species v is a child of a species u then the character state l(v) is either equivalent to, or a child of the character state l(u)
 - does not allow "scattering" [Lipscomb (1992)]



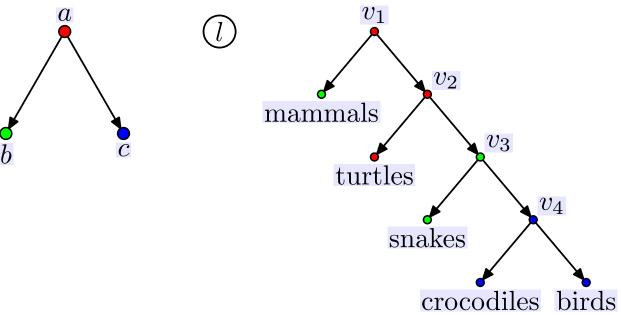
- task:
 - find a *labeling* $l : V(G) \rightarrow V(H)$ which is:
 - *p*-constrained
 - if a species v is a child of a species u then the character state l(v) is either equivalent to, or a child of the character state l(u)
 - does not allow "scattering" [Lipscomb (1992)]



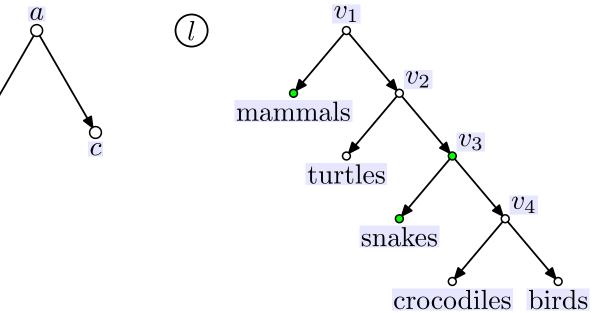
- task:
 - find a *labeling* $l : V(G) \rightarrow V(H)$ which is:
 - *p*-constrained
 - if a species v is a child of a species u then the character state l(v) is either equivalent to, or a child of the character state l(u)
 - Joes not allow "scattering" [Lipscomb (1992)]
- existence of such labeling *l* is very close to graph-theoretical notion of graph minors

bag-set of a state *a*: the set of connected components (called bags) of the subgraph of G_g induced by vertices in l⁻¹(a)

bag-set of a state *a*: the set of connected components (called bags) of the subgraph of G_g induced by vertices in l⁻¹(a)

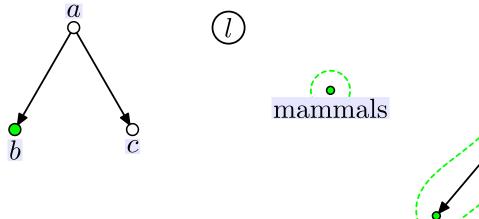


bag-set of a state *a*: the set of connected components (called bags) of the subgraph of *G_g* induced by vertices in *l⁻¹(a)*



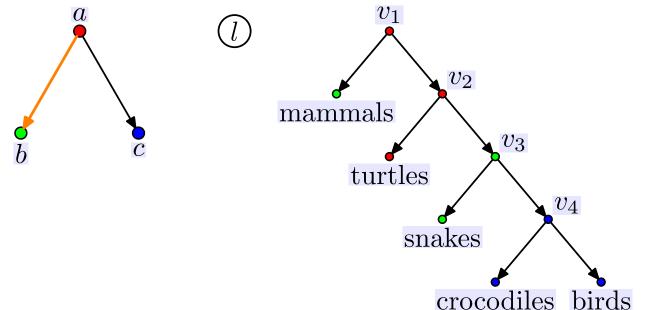
■ bag-set of a state *a*: the set of connected components (called bags) of the subgraph of G_g induced by vertices in $l^{-1}(a)$

snakes

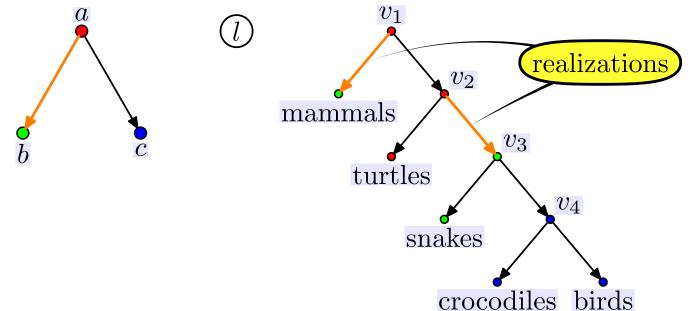


- bag-set of a state a: the set of connected components (called bags) of the subgraph of Gg induced by vertices in l⁻¹(a)
- evolutionary step $\langle u, v \rangle$ is a realization of an evolutionary transition $\langle a, b \rangle$ if l(u) = a and l(v) = b

- bag-set of a state a: the set of connected components (called bags) of the subgraph of Gg induced by vertices in l⁻¹(a)
- evolutionary step $\langle u, v \rangle$ is a realization of an evolutionary transition $\langle a, b \rangle$ if l(u) = a and l(v) = b

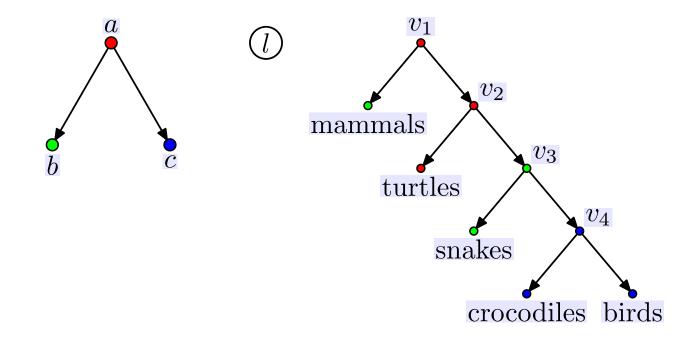


- bag-set of a state a: the set of connected components (called bags) of the subgraph of Gg induced by vertices in l⁻¹(a)
- evolutionary step $\langle u, v \rangle$ is a realization of an evolutionary transition $\langle a, b \rangle$ if l(u) = a and l(v) = b



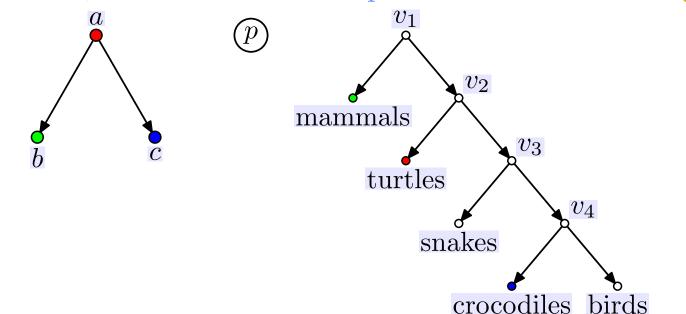
- bag-set of a state a: the set of connected components (called bags) of the subgraph of Gg induced by vertices in l⁻¹(a)
- evolutionary step $\langle u, v \rangle$ is a realization of an evolutionary transition $\langle a, b \rangle$ if l(u) = a and l(v) = b
- We say that H_h is a *rooted-tree minor of* G_g , if there exists a labeling $l : V(G) \rightarrow V(H)$ satisfying:
 - (1) for each character state *a*, the bag-set of *a* contains **exactly one** component; and
 - (2) each evolutionary transition has a realization.

- We say that H_h is a *rooted-tree minor of* G_g , if there exists a labeling $l : V(G) \rightarrow V(H)$ satisfying:
 - (1) for each character state *a*, the bag-set of *a* contains **exactly one** component; and
 - (2) each evolutionary transition has a realization.



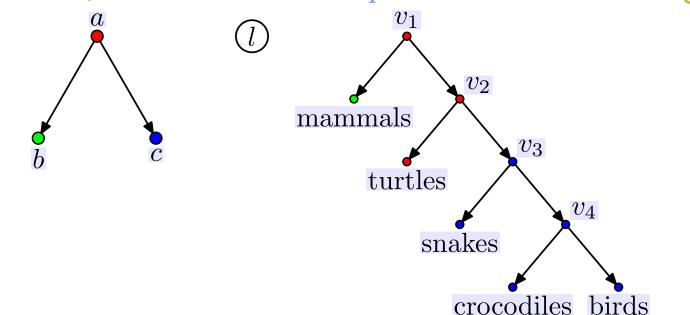
- We say that H_h is a *rooted-tree minor of* G_g , if there exists a labeling $l : V(G) \rightarrow V(H)$ satisfying:
 - (1) for each character state *a*, the bag-set of *a* contains **exactly one** component; and
 - (2) each evolutionary transition has a realization.

however, there exists such *p*-constrained labeling *l*



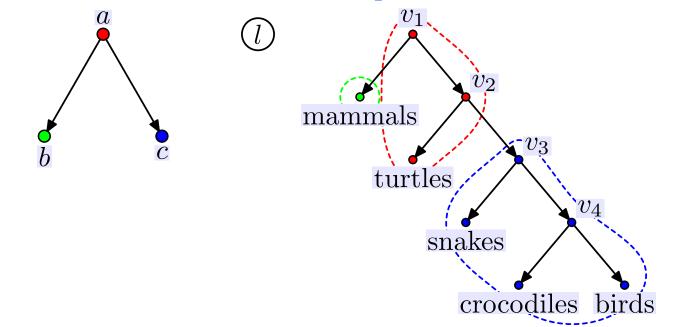
- We say that H_h is a *rooted-tree minor of* G_g , if there exists a labeling $l : V(G) \rightarrow V(H)$ satisfying:
 - (1) for each character state *a*, the bag-set of *a* contains **exactly one** component; and
 - (2) each evolutionary transition has a realization.

however, there exists such *p*-constrained labeling *l*



- We say that H_h is a *rooted-tree minor of* G_g , if there exists a labeling $l : V(G) \rightarrow V(H)$ satisfying:
 - (1) for each character state *a*, the bag-set of *a* contains **exactly one** component; and
 - (2) each evolutionary transition has a realization.

however, there exists such *p*-constrained labeling *l*



Rooted-tree minor problem. Given two rooted trees H_h and G_g , and a leaf labeling $p : L(G_g) \to V(H)$. Decide whether H_h is a rooted-tree minor of G_g with respect to p.

Rooted-tree minor problem. Given two rooted trees H_h and G_g , and a leaf labeling $p : L(G_g) \rightarrow V(H)$. Decide whether H_h is a rooted-tree minor of G_g with respect to p.

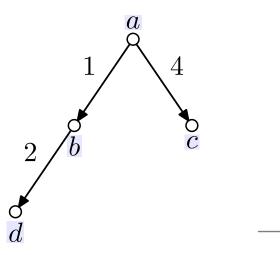
Tree minor problem is NP-hard. [Matousek, Thomas (1992)]

Rooted-tree minor problem. Given two rooted trees H_h and G_g , and a leaf labeling $p : L(G_g) \rightarrow V(H)$. Decide whether H_h is a rooted-tree minor of G_g with respect to p.

- Tree minor problem is NP-hard. [Matousek, Thomas (1992)]
- Tree minor problem can be converted to Rooted-tree minor problem, hence Rooted-tree minor problem is also NP-hard (when p is the empty leaf labeling).

Rooted-tree minor problem. Given two rooted trees H_h and G_g , and a leaf labeling $p : L(G_g) \rightarrow V(H)$. Decide whether H_h is a rooted-tree minor of G_g with respect to p.

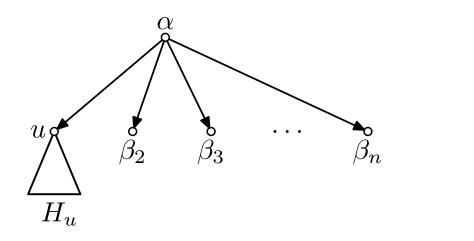
- Tree minor problem is NP-hard. [Matousek, Thomas (1992)]
- Tree minor problem can be converted to Rooted-tree minor problem, hence Rooted-tree minor problem is also NP-hard (when p is the empty leaf labeling).

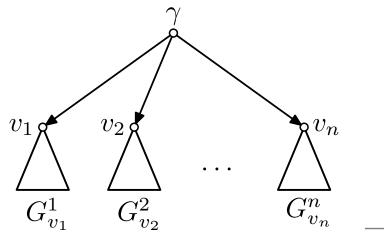


Consider an instance of Tree minor problem:

Rooted-tree minor problem. Given two rooted trees H_h and G_g , and a leaf labeling $p : L(G_g) \to V(H)$. Decide whether H_h is a rooted-tree minor of G_g with respect to p.

- Tree minor problem is NP-hard. [Matousek, Thomas (1992)]
- Tree minor problem can be converted to Rooted-tree minor problem, hence Rooted-tree minor problem is also NP-hard (when p is the empty leaf labeling).





Rooted-tree minor problem. Given two rooted trees H_h and G_g , and a leaf labeling $p : L(G_g) \rightarrow V(H)$. Decide whether H_h is a rooted-tree minor of G_g with respect to p.

Theorem 1. Rooted-tree minor problem is NP-hard.

Rooted-tree minor problem. Given two rooted trees H_h and G_g , and a leaf labeling $p : L(G_g) \to V(H)$. Decide whether H_h is a rooted-tree minor of G_g with respect to p.

- **Theorem 1.** *Rooted-tree minor problem* is NP-hard.
- Theorem 2. If the leaf labeling p is complete, then Rooted-tree minor problem can be decided in linear time.

Rooted-tree minor problem. Given two rooted trees H_h and G_g , and a leaf labeling $p : L(G_g) \rightarrow V(H)$. Decide whether H_h is a rooted-tree minor of G_g with respect to p.

- Theorem 1. Rooted-tree minor problem is NP-hard.
- Theorem 2. If the leaf labeling p is complete, then Rooted-tree minor problem can be decided in linear time.
 - Compute the LCA-tree.

(The label of each species is the least common ancestor of labels of its children.)

This can be done in linear time (requires preprocessing on the character evolution tree [Harel, Tarjan (1984)]).

Rooted-tree minor problem. Given two rooted trees H_h and G_g , and a leaf labeling $p : L(G_g) \rightarrow V(H)$. Decide whether H_h is a rooted-tree minor of G_g with respect to p.

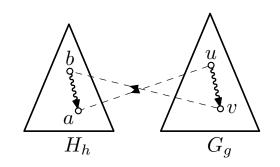
- **Theorem 1.** Rooted-tree minor problem is NP-hard.
- Theorem 2. If the leaf labeling p is complete, then Rooted-tree minor problem can be decided in linear time.
 - Compute the LCA-tree.
 - Fix labels of inner vertices of all single branch paths in G_g (if possible).

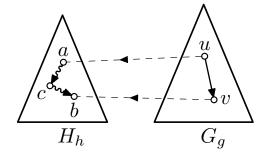
Crucial lemma: the ends of single branch paths are already fixed correctly for any labeling *l* satisfying the definition of *Rooted-tree minor*.

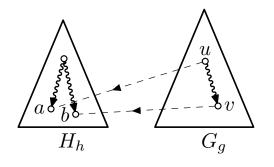
Rooted-tree minor problem. Given two rooted trees H_h and G_g , and a leaf labeling $p : L(G_g) \rightarrow V(H)$. Decide whether H_h is a rooted-tree minor of G_g with respect to p.

- **Theorem 1.** Rooted-tree minor problem is NP-hard.
- Theorem 2. If the leaf labeling p is complete, then Rooted-tree minor problem can be decided in linear time.
 - Compute the LCA-tree.
 - Fix labels of inner vertices of all single branch paths in G_g (if possible).
 - If each evolutionary transition has exactly one realization accept the input.

Incongruences



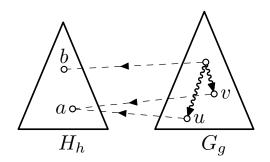




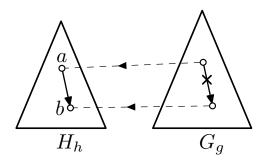
Inversion

Transitivity

Addition



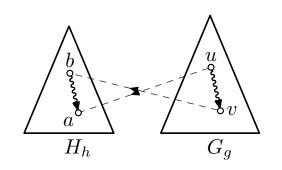
Separation

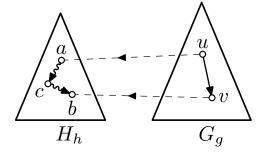


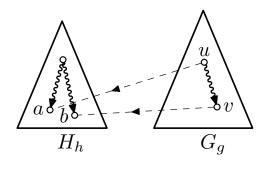
Negligence

Remark: solid lines represent arcs, wavy lines directed paths of length at least one.

Incongruences



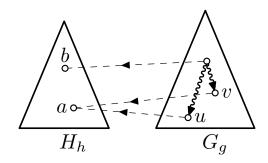




Inversion

Transitivity

Addition



Separation

Negligence

find labeling of nodes in phylogenetic tree minimizing the number of incongruences

Parsimony criteria

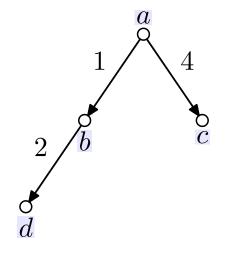
Given two rooted trees H_h and G_g with a labeling $l : G \to H$ and a weight function d on H_h , the *arc cost* and the *bag cost* of l are defined as follows:

$$\operatorname{arccost}(H_h, G_g, l) := \sum_{\langle u, v \rangle \in A(G_g)} d(l(u), l(v)),$$
$$\operatorname{bagcost}(H_h, G_g, l) := \sum_{v \in V(H)} \text{size of the bag-set of } v.$$

Parsimony criteria

Given two rooted trees H_h and G_g with a labeling $l : G \to H$ and a weight function d on H_h , the *arc cost* and the *bag cost* of l are defined as follows:

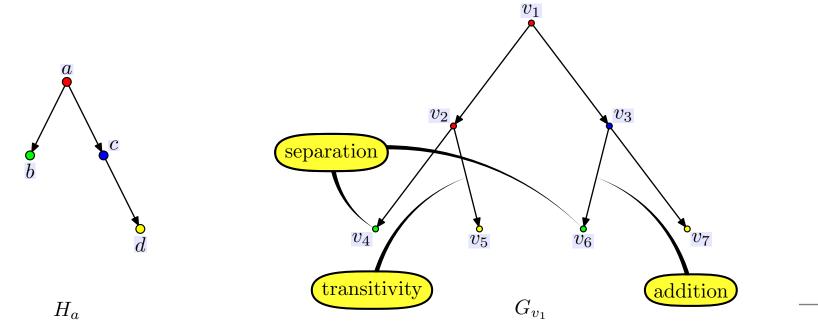
$$\operatorname{arccost}(H_h, G_g, l) := \sum_{\langle u, v \rangle \in A(G_g)} d(l(u), l(v)),$$
$$\operatorname{bagcost}(H_h, G_g, l) := \sum_{v \in V(H)} \text{size of the bag-set of } v.$$



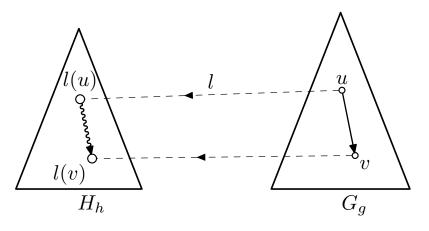
- **Relax-minor:** Given two rooted trees H_h and G_g with a leaf labeling p, we say that H_h is a *relax-minor* of G_g with respect to p if there exists a p-constrained labeling function $l: G \to H$ satisfying the following two conditions:
 - each evolutionary transition has a realization (no negligence); and
 - if u is an ancestor of v, then l(v) cannot be a proper ancestor of l(u) (no inversion).

Relax-minor:

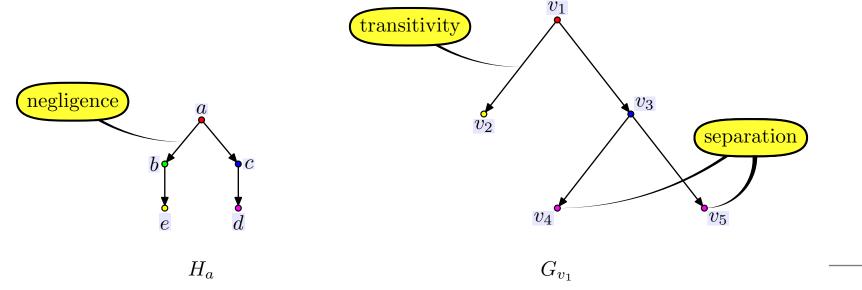
- each evolutionary transition has a realization (no negligence); and
- if u is an ancestor of v, then l(v) cannot be a proper ancestor of l(u) (no inversion).
- **Example** of other incongruences:



- Given two rooted trees H_h and G_g with a leaf labeling p, we say that H_h is a *pseudo-minor* of G_g with respect to p if there exists a p-constrained labeling function $l: G \to H$ such that
 - for every evolutionary step $\langle u, v \rangle$, l(u) is an ancestor of l(v) (no addition and inversion).



- Given two rooted trees H_h and G_g with a leaf labeling p, we say that H_h is a *pseudo-minor* of G_g with respect to p if there exists a p-constrained labeling function $l: G \to H$ such that
 - for every evolutionary step $\langle u, v \rangle$, l(u) is an ancestor of l(v) (no addition and inversion).
- **Example** of other incongruences:



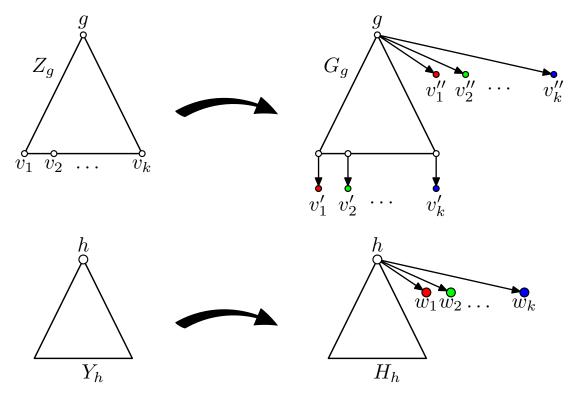
summary:

	rooted minor	relax-minor	pseudo-minor
inversion	Ν	Ν	Ν
transitivity	Ν	Y	Y
addition	Ν	Y	Ν
separation	Ν	Y	Y
negligence	Ν	Ν	Y

Problem 1. Find a relax-minor labeling with the minimal bag-cost.

- Problem 1. Find a relax-minor labeling with the minimal bag-cost.
 - NP-hard if p is the empty leaf labeling.

- Problem 1. Find a relax-minor labeling with the minimal bag-cost.
 - NP-hard if p is the empty leaf labeling.
 - NP-hard even when p is a complete leaf labeling.



- Problem 1. Find a relax-minor labeling with the minimal bag-cost.
 - NP-hard if p is the empty leaf labeling.
 - NP-hard even when p is a complete leaf labeling.
- Problem 2. Find a relax-minor labeling with the minimal arc-cost.

- Problem 1. Find a relax-minor labeling with the minimal bag-cost.
 - NP-hard if p is the empty leaf labeling.
 - NP-hard even when p is a complete leaf labeling.
- Problem 2. Find a relax-minor labeling with the minimal arc-cost.
 - Since the relax-minor allows addition, the arc-cost is not always finite.

- Problem 1. Find a relax-minor labeling with the minimal bag-cost.
 - NP-hard if p is the empty leaf labeling.
 - NP-hard even when p is a complete leaf labeling.
- Problem 2. Find a relax-minor labeling with the minimal arc-cost.
 - Since the relax-minor allows addition, the arc-cost is not always finite.
 - NP-hard if p is the empty leaf labeling.

- Problem 1. Find a relax-minor labeling with the minimal bag-cost.
 - NP-hard if p is the empty leaf labeling.
 - NP-hard even when p is a complete leaf labeling.
- Problem 2. Find a relax-minor labeling with the minimal arc-cost.
 - Since the relax-minor allows addition, the arc-cost is not always finite.
 - NP-hard if p is the empty leaf labeling.
 - Open problems.
 - Is it possible to solve Problem 2 in polynomial time when p is a complete leaf labeling?
 - Is it possible to decide whether there is a relax-minor labeling with finite arc-cost in P time?

Problem 3. Find a pseudo-minor labeling with the minimal bag-cost.

- Problem 3. Find a pseudo-minor labeling with the minimal bag-cost.
 - Can be done in linear time:
 - compute the LCA-tree;
 - if a species does not belong to a bag containing a leaf, change its label to the label of the root.

- Problem 3. Find a pseudo-minor labeling with the minimal bag-cost.
 - Can be done in linear time:
 - compute the LCA-tree;
 - if a species does not belong to a bag containing a leaf, change its label to the label of the root.
- Problem 3. Find a pseudo-minor labeling with the minimal arc-cost.

- Problem 3. Find a pseudo-minor labeling with the minimal bag-cost.
 - Can be done in linear time:
 - compute the LCA-tree;
 - if a species does not belong to a bag containing a leaf, change its label to the label of the root.
- Problem 3. Find a pseudo-minor labeling with the minimal arc-cost.
 - Can be done in linear time:
 - compute the LCA-tree.