Optimal Spaced Seeds for Hidden Markov Models, with Applications to Homologous Coding Regions

Broňa Brejová, Daniel G. Brown, Tomáš Vinař School of Computer Science, University of Waterloo

Large-scale pairwise local alignment

- Problem: Given two long genomic sequences, identify and align similar regions
- Fundamental tool in comparative genomics
- Full O(nm) dynamic programing not feasible
- Fast heuristic methods are used (e.g. BLAST)

BLAST [S. F. Altschul et al. 1990]

Algorithm:

- 1. Find exact matches of length w (hits)
- 2. Extend hits to alignments

Problems:

- False positives: spurious hits that cannot be extended to significant alignments; they increase running time
- False negatives: real alignments without a hit; they are not found
- Sensitivity: fraction of real alignments with a hit
- Decrease $w \rightarrow$ increase sensitivity but also running time Increase $w \rightarrow$ decrease running time but also sensitivity

Spaced seeds – PatternHunter [Ma, Tromp, Li, 2002]

Increases sensitivity without increasing running time

BLAST hit:	w consecutive matches		
PatternHunter hit:	w non-consecutive matches in a prescribed		
	pattern, called spaced seed		
	(w – weight of the seed)		

Spaced seed as a binary string:

1 = position with required match; 0 = "don't care" position

Example: hits of seed 1101

GTGGTGCTCTCTGACAAAGCC ATTGTTCTTAATGAGAAAGAA 1101 1101 1101 1101

PatternHunter (cont.)

- $\bullet\,$ All seeds of weight $w \to {\rm roughly}\,{\rm same}\,{\rm running}\,{\rm time}\,$
- Seeds differ in sensitivity
- Want: most sensitive seed of a given weight

 \rightarrow How to predict seed sensitivity?

Prediction of seed sensitivity

- Predicted sensitivity: probability that a random alignment has at least one seed hit
- Random alignment: positions are independent, match with probability p, mismatch with probability 1-p
- This specifies a simple probabilistic model of alignments

PatternHunter (cont.)

Assume: alignment length 80, probability of match 0.7

BLAST	PatternHunter		
111111111	111001001001010111		
Expected number of hits:			
$71 \cdot 0.7^{10} = 2.01$	$63 \cdot 0.7^{10} = 1.78$		
Probability of hit at position $i + i$	$\cdot 1$ if hit at position i :		
0.7	$0.7^6 = 0.12$		
111111111	111 0 01 0 01 0 1 0 111		
111111111 1	11 1 00 1 00 1 00 1 0111		
Hits clustered together	Hits more "independent"		
Sensitivity			
0.5	0.7		

Seed sensitivity on protein coding regions

PatternHunter seed performs well for general alignments

Protein coding regions

- Genome regions encoding proteins
- Alignments between protein coding regions:
 - Help to locate protein coding regions
 - Most alignments between distant species are inside protein coding regions

How PatternHunter seeds perform on coding region alignments?

Seed sensitivity on protein coding regions

Testing data: coding region alignments between human and Drosophila

Why the difference between prediction and reality?

Special properties of coding regions:

• Sequence of triplets (codons). Each encodes one amino acid.

Mutation rate depends on position within codon:

Position within codon:	first	second	third
Probability of match in our set:	0.54	0.64	0.34

- Dependencies among codon positions.
- Similarity level is not uniform:

Our approach:

- Better model for random alignments of coding regions
- Algorithm to predict sensitivity in such a model

Models for random alignments of coding regions $M^{(3)}$ model:

- parameters p_0 , p_1 , p_2
- alignment positions independent
- position i is a match with probability $p_{i \mod 3}$
- models 3-periodic codon structure

Models for random alignments of coding regions (cont.)

Hidden Markov model (HMM):

- Four blocks, each with different similarity level
- Each block emits one or several codons
- Allow dependencies between codon positions

Prediction of seed sensitivity under HMM

- Extension of algorithm from [Keich, Li, Ma, Tromp].
- Given seed Q and HMM emitting binary (match/mismatch) sequence, compute sensitivity by dynamic programming
- Subproblem: A(l, T, s) =Pr[hit in first *l* characters | HMM starts in state *s* by generating *T*] $\leq l$
- Let H be set of all possible hits of Q (strings of length $\left|Q\right|$)
- Let H_P be set of prefixes of H
- Base cases: If l < |Q|, then A(l,T,s) = 0 (seq. too short) If $T \in H$, then A(l,T,s) = 1 (guaranteed hit)

Prediction of seed sensitivity under HMM (cont.)

• If $T \in H_P \setminus H$, then

$$\begin{aligned} A(l,T,s) &= q \cdot A(l,T1,s) \\ &+ (1-q) \cdot A(l,T0,s) \end{aligned}$$

 $q = \Pr[\text{HMM emits 1 after } T]$

• If
$$T \notin H_P$$
, then

$$A(l,T,s) = \sum_{\text{state } s'} p_{s \rightsquigarrow s'} \cdot A(l',T',s')$$

 $T' = \text{longest suffix of } T \text{ in } H_P$ $p_{s \rightsquigarrow s'} = \Pr[\text{HMM starts } T' \text{ in state } s']$

Seed sensitivity on protein coding regions II.

WABA: 110 110 110 110 11

Observations from data

- Best seed matches 85% of alignments
- Top 3 actual seeds also top 3 seeds in HMM.
- BLAST seed matches only 45% of alignments
- Other programs for similar task:
 - TBLASTX: Translates both sequences into protein, then compares. Very slow.
 - BLAT: Seeds can have mismatches, but not to a pattern.
 - WABA: Seeds of form 110110110110
- Our method as much as 40 x as fast as TBLASTX, while essentially as sensitive. Much faster than BLAT, more sensitive than WABA.

Conclusion

- HMMs model coding regions alignments well.
- We developed an algorithm for computing sensitivity of a seed in such a model.
- Optimal seeds for these models highly sensitive in practice.

Future work:

- Faster algorithms for computing sensitivity
- Modeling other types of alignments
- Applications to other areas